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We consider a one-dimensional lattice of Ising-type variables where the ferromagnetic exchange interaction
J between neighboring sites is frustrated by a long-ranged antiferromagnetic interaction of strength g between
the sites i and j, decaying as �i− j�−�, with ��1. For � smaller than a certain threshold �0, which is larger than
2 and depends on the ratio J /g, the ground state consists of an ordered sequence of segments with equal length
and alternating magnetization. The width of the segments depends on both � and the ratio J /g. Our Monte
Carlo study shows that the on-site magnetization vanishes at finite temperatures and finds no indication of any
phase transition. Yet, the modulation present in the ground state is recovered at finite temperatures in the
two-point correlation function, which oscillates in space with a characteristic spatial period. The latter depends
on � and J /g and decreases smoothly from the ground-state value as the temperature is increased. Such an
oscillation of the correlation function is exponentially damped over a characteristic spatial scale, the correlation
length, which asymptotically diverges roughly as the inverse of the temperature as T=0 is approached. This
suggests that the long-range interaction causes the Ising chain to fall into a universality class consistent with an
underlying continuous symmetry. The e�/T temperature dependence of the correlation length and the uniform
ferromagnetic ground state, characteristic of the g=0 discrete Ising symmetry, are recovered for ���0.

DOI: 10.1103/PhysRevB.79.214434 PACS number�s�: 75.60.Ch, 64.60.De, 75.10.Hk

I. INTRODUCTION

The competition between a short-ranged interaction favor-
ing local order and a long-range interaction frustrating it on
larger spatial scales is often used to explain pattern formation
in chemistry, biology, and physics.1,2 The role of the long-
range interaction is to avoid the global phase separation fa-
vored by the short-ranged interaction and promote a state of
phase separation at mesoscopic or nanoscales. Thus, the
long-range interaction is not, in general, a small
perturbation3–8 but must be considered as precisely as pos-
sible. From a computational point of view, this means that
the frustrating interaction has to be accounted for by involv-
ing all the lattice sites in the computation, which in turn
limits the actual system size that can be handled in, e.g.,
Monte Carlo �MC� simulations.9–14 Few exact results on
multiscale and multi-interaction3,4 systems are present—to
our knowledge—in literature. For one-dimensional systems,
rigorous proof of absence of a phase transition in the pure
long-range antiferromagnetic model has been obtained.15 Be-
sides, rigorous results concerning the ground-state phase dia-
gram can be found in Ref. 3. Regarding two-dimensional
�2D� lattice models with restricted spin orientation and
dipole-dipole interaction competing with ferromagnetic
nearest-neighbor exchange interaction, Giuliani et al.16

showed that the ground state is periodic striped while a zero-
temperature reorientation transition �from in-plane to out-of-
plane magnetization� occurs at a given relative strength of
the short-range and long-range interactions when both are
antiferromagnetic. Finally, a generalization of this periodic
ground state in some continuum versions has been rigorously
proved.17–19

In this paper, we perform MC simulations on a one-
dimensional �1D� lattice with sites occupied by Ising-type

classical variables assuming values � j = �1. The nearest-
neighbor sites interact by a short-ranged ferromagnetic inter-
action of strength J which favors the same sign for two ad-
jacent variables �in the language of magnetism, the exchange
interaction favors parallel alignment of neighboring spins�.
In addition, any two variables located at sites i and j interact
by means of a long-range interaction of strength g decaying
according to a power law �i− j�−� and favoring, instead, anti-
parallel alignment. In the present study, selected values of
��1 and in the vicinity of 2 are investigated. This range
turns out to be representative of the different physical re-
gimes. We are aware of the apparently academic nature of �i�
a one-dimensional model and of �ii� this choice of values for
�. In fact, point charges interact via the Coulomb interaction,
which has �=1, while the dipolar interaction between two
localized magnetic moments has �=3. On the other side,
imposing a monodimensional modulation to two- or three-
dimensional �3D� arrangement of charges and spins �a sym-
metry often realized in experiments1,2,20,21� produces an ef-
fective one-dimensional long-ranged interaction potential
with an effective value of � which can differ from 1 and 3,
respectively. As an example, elementary magnetic moments
arranged into stripes and located on a two-dimensional array
of sites interact with an effective one-dimensional dipolar
long-range interaction which, asymptotically, is proportional
to �i− j�−2.20 Accordingly, a systematic study for values of �
in this range might reveal properties that can be used to
explain physically relevant situations, such as those repre-
sented by the two-dimensional system of stripes quoted
above or similar models of frustration discussed in connec-
tion with electronic phase separation.5 A 1D model has great
computational advantages compared to its 2D and 3D coun-
terparts, such as the possibility of simulating lattices of larger
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linear dimensions, which in turn allows larger modulation
lengths than already reported,9–14 which are, indeed, closer to
experimental situations. Later in the paper, we will single out
the relevance of our results for understanding realistic spin
and charged systems. Besides, variations in the 1D Ising
model including long-ranged potentials have been widely ap-
plied to biological problems,22 such as protein folding23 and
helix-coil transitions.24

This paper is organized as follows. In Sec. II, we intro-
duce the model and its known ground-state phase diagram3

and then present our main results on the oscillatory character
of the two-point correlation function on the temperature de-
pendence of the corresponding modulation period and on the
correlation length. These facts point to the persistence of the
modulated structure emerging in the ground state even if,
strictly speaking, the on-site order is completely lost in the
thermodynamic limit.25 In Sec. III, we provide some argu-
ments aiming at explaining, within an analytic approach, the
crossover from the g=0 Ising universality class to a
continuous-symmetry behavior for g�0 and ���0 as well
as the temperature dependence of some physical observables
in comparison with MC simulations. In Sec. IV, we provide a
summary of the most relevant results and indicate possible
directions for further work. Technical aspects of the MC
simulations and of the analytical computations are presented
in Appendixes A–D.

II. MONTE CARLO RESULTS

A. Model and the ground state

The Hamiltonian with Ising variables �i= �1 on a 1D
lattice reads as

H = − J�
j=1

N

� j� j+1 +
g

2 �
�i�j�

�i� j

�i − j��
, �1�

where N is the number of spins in the chain and �i� j� indi-
cates a sum over all the couples in the chain; periodic bound-
ary conditions �i+N=�i are assumed. The ground state3 of
this Hamiltonian is uniform for ���0, where �0�2 de-
pends on the ratio J /g. For ���0, the ground state consists
of a regular sequence of groups of h adjacent spins with
positive �� j =+1� and negative �� j =−1� orientations. The
zero-temperature phase diagram in the �� ,g /J� plane is sche-
matically reported in Fig. 1. The inset zooms into the region
of the parameter space ��� ,J /g� plane in this case� in which
MC simulations have been performed: J /g=2.5 and �
=1.6, . . . ,3.2. The main thermodynamic observable we ad-
dress is the two-point correlation function at temperature T
and fixed �

C��r� = 		� j+r� j
 j
T �2�

and its Fourier transform S��q� �commonly named structure
factor�

S��q� = �
r=−�

+�

		� j+r� j
 j
T e−iqr. �3�

As the system cannot be assumed to have translational in-
variance, an average over the lattice sites j is needed �	¯ 
 j

in Eqs. �2� and �3� and henceforth�; 	¯ 
T denotes the ther-
mal average. The physical quantities computed with the MC
approach actually correspond to the double average 	¯ 

= 		¯ 
 j
T.

The lowest-energy spin profiles are known to be square
waves Sq�k0j� with a modulation period 2h=2	 /k0.3 The
total energy can be parametrized with h by inserting the
square profile into the Hamiltonian �1�. The ground-state
equilibrium value of h—let us call it hgs, corresponding to
kgs—is then determined by minimizing the resulting energy
�B3� with respect to h. hgs depends on � and J /g; some
values are reported in Fig. 5. The two-point correlation func-
tion for a generic square-wave profile reads as �see Appendix
B for details�

	� j+r� j
 j =
1

N
�
j=1

N

Sq�k0�j + r��Sq�k0j� =
1

2 �
m=0

�

am
2 cos�kmr�

� Tr�k0r� , �4�

where k0=	 /h, km= �2m+1�k0, am=4�	�2m+1��−1, and
Tr�k0r� is a symmetric triangular wave of period 2h. Accord-
ing to Eq. �4� evaluated in h=hgs, the ground-state structure
factor only takes nonzero values in the points located at q
= � �2m+1�kgs for which S���2m+1�kgs�=N ·4�	�2m+1��−2.
The structure factor of a uniform state takes a finite value at
q=0 only: S��0�=N. This case can be regarded as the limit
h→� so that k0=0 and all the peaks of S��km� collapse into
the peak at q=0.

B. Finite temperature

Fig. 2 shows the two-point correlation function �2� com-
puted by MC simulations for �=1.8 �domain ground state�
and �=3.0 �uniform ground state� at different temperatures
�see Appendix A for details about the computational meth-
ods�. In spite of the fact that the single-spin average 		� j
 j
T

J/
g

g
/J

Domain
ground state

Uniform
ground state

FIG. 1. �Color online� Ground-state phase diagram in the
�� ,g /J� plane. For 1���2, the ground state always consists of
domains �grey region�. For ��2, the crossover to a uniform ground
state �white region� occurs when � exceeds the threshold value �0

indicated by the solid line. MC calculations have been performed
for values of � between 1.6 and 3.2 and g /J=0.4 �horizontal line�.
Inset: zoom of the region where MC simulations have been per-
formed in the �� ,J /g� plane, J /g=2.5 �horizontal line�.
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is zero at any finite temperature, the correlation function re-
produces the essential aspects of the ground-state spin con-
figurations. For �=1.8 �Fig. 2�a��, C��r� displays an oscilla-
tory decay as a function of r, indicating that the loss of
on-site magnetization proceeds in such a way that the
ground-state segment order is maintained. In the regime in
which the ground state is uniform ��=3�, instead, the corre-
lation function decays smoothly and, in general, monotoni-
cally �Fig. 2�b��. A closer look at the highest reported tem-
peratures �T /g=0.8,1.4� reveals a small interval at short
distances in which C��r� becomes negative �inset in Fig.
2�b��. This might be taken as an indication that, even starting
from a uniform ground state, when the temperature is in-
creased the system can spontaneously produce a phase with
reduced symmetry in which the short-range order occurs
with a well-defined modulation. We will come back to this
point at the end of Sec. III.

In Fig. 3, the structure factor corresponding to �=1.8 and
T=0.02 is plotted. The set of discrete peaks of the ground

state has broadened to Lorentzians centered at q= �2m
+1�q�,max. Here, q�,max means the position of the highest
peak of the simulated S��q� at finite T and does not, in gen-
eral, coincide with kgs �the temperature dependence of q�,max
will be discussed below�. The occurrence of multiple peaks
in the finite-temperature structure factor not only indicates
that the periodic structure of the ground state propagates at
finite temperatures but also shows that some memory of the
detailed square-wave spin profile is retained. As T is in-
creased, peaks with m�0 rapidly lose weight and, for T

0.1, basically only one peak is detectable. This implies a
change in the correlation profile from triangular wavelike �all
harmonics� at low temperatures to cosinelike �single har-
monic� at higher temperatures. The same crossover is pre-
dicted to occur for the equilibrium mean-field spin profile
within a 2D stripe-domain pattern and observed experimen-
tally in the striped phase of ultrathin Fe films grown epitaxi-
ally on Cu�001�.20 Note that the height of the peaks of S��q�
in the ground-state scales such as �2m+1�−2, while the ratio
between the peaks at m=1 and m=0 in Fig. 3 is about an
order of magnitude smaller at finite temperatures. In the next
section, we will give a simple explanation for this observa-
tion. The Lorentzian shape of the peaks and the m depen-
dence of their width �inset�—which are related to the expo-
nential spatial dumping of the correlation shown in Fig.
2�a�—will also be discussed in Sec. III.

A typical temperature dependence of the structure factor
is shown in Fig. 4 using a linear scale where only the most
prominent peak m=0 is evident. Two facts are visible: �1� the
location of the maximum q�,max varies with temperature and
�2� the peak broadens considerably when the temperature is
increased. We will discuss these two features more thor-
oughly.

1. Temperature and � dependence of q�,max

	h�
�	 /q�,max is plotted as a function of the temperature
in Fig. 5 for the set of values �=1.6,1.8,2 ,2.2, all in the
regime ���0 for the chosen J /g. The ground-state value hgs
found by minimizing the total energy �B3� with respect to h
is also indicated. When � is increased—approaching the
transition line to the uniform state—both ground-state and
finite-temperature values also increase. A strongly decaying
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FIG. 2. �a� Correlation function for �=1.8 �domain ground
state� at different temperatures for L=1000 and J=2.5. �b� Correla-
tion function for �=3.0 �uniform ground state� at different tempera-
tures for L=1000 and J=2.5. Inset: reminiscence of the competing
dipolar interaction �see text�.
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FIG. 3. �Color online� Structure factor obtained by MC simula-
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located at q=qm= �2m+1�q�,max �and J=2.5�. Inset: the HWHM
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long-range interaction favors longer periods. To be more
quantitative, two temperature regions have to be considered.

�i� For T /J
0.3, the period of modulation decreases with
temperature, in a similar way to what is found for the stripe
width in the mean-field approximation �MFA� of a similar
but 2D model and in line with experimental results.20

�ii� The temperature range T /J
0.3 is more difficult to
explain. The modulation period saturates at the ground-state
value for �=1.6,1.8 and remains below the ground-state
value for �=2.0,2.2. We interpret the convergence of 	h�

→hgs with T→0 as a positive indication that our MC calcu-
lations capture the essential equilibrium properties of the
model; although we note that for larger periods, in this tem-
perature range, the MC acceptance rate approaches zero
�“blocked condition”�. A further investigation should be re-
quired to decide whether this is due to a technical limitation
or rather to the set in of intrinsic slow dynamics by analogy
with similar systems.26–30

In Appendix D we will introduce an energy functional for
finite T which depends parametrically on the period of modu-
lation 2h. Within some approximations, there we show that
the minimum of such a functional is found for smaller h as
the temperature is increased, thus, reproducing qualitatively
the dependence of q�,max on T.

2. Temperature and � dependence of the correlation length
��(T)’��,max

−1 , ��,max being the half-width at half maximum of
the Lorentzian centered at q�,max

In Fig. 6, �� is plotted versus T /g for �=1.6,1.8,2 ,2.2
�all falling in the region ���0 for J /g=2.5� in a log-log
scale. Dots correspond to MC data while the solid lines rep-
resent fits with the function A� /TB�, with fitting parameters
A� and B�. The best fit yields the same exponent B�

=1.10�5� for each �, while A� has a more complicated de-
pendence on � �see squares in the inset of Fig. 6 �the zig-zag
line will be discussed in the next section��. We conclude that
the dependence of the correlation length on T is better de-
scribed by A� /TB� than the Ising exponential relation e�/T,
which holds for g=0. A deeper understanding of this differ-
ence will be provided in Sec. III. For a comparison with the

uniform regime �i.e., �=2.6,2.8,3 ,3.2�, let us consider the
correlation function for �=3.0 displayed in Fig. 2�b�. Note
that the plot is limited to low-enough temperatures in order
to avoid the anomalous range of spatial decay where the
correlation function becomes negative �see inset of Fig.
2�b��. Besides, in the temperature range T=0.3, . . . ,0.8, the
g=0 behavior is recovered. In fact, looking at the correlation
length �� for �=2.6,2.8,3 ,3.2, we find that it is better fitted
by ���exp��� /T�, see the log-linear plot of �� versus g /T
in Fig. 7. Remarkably, the energy barrier �� does depend on
� �see squares in the inset of Fig. 7 �the dashed line will be
discussed at the end of the next section��.

Regarding the possibility to observe long-range order at
finite temperature, our MC results seem to exclude such a
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hypothesis. In fact, in a correct analysis of the structure fac-
tor, beyond the usual intensive term connected with the cor-
relations �Lorenzian-type functions�, one should also take
into account an extensive factor associated with the occur-
rence of long-range order.31 This last component has always
been considered in the fitting procedure but it has never
given a significant contribution to the simulated structure
factor �3�. The occurrence of long-range order at T=0 only is
also supported by the low-temperature divergence of �� for
both ���0 �Fig. 6� and ���0 �Fig. 7�. The whole scenario
confirms some recent theoretical works. In fact, in Ref. 15
the absence of long-range order at any temperature for g
�0, J=0, and ��1 is rigorously proved. Even if in that
specific case a short-range ferromagnetic term was not in-
cluded, it seems reasonable to extend such a result to the case
J�0 and conclude that long-range order should not occur
with the model Eq. �1� for ��1.3 The occurrence of a phase
transition has been suggested, instead, for 0���1 so that it
would be particularly interesting to investigate the finite-
temperature properties of the model �1� in this regime. How-
ever, several other issues are related to the divergence of the
energy per spin for pair-spin interaction decaying as 1 /r�

with ��d, d being the dimension of the space in which the
spin system is embedded such as energy nonadditivity and
ensemble inequivalence.32–34 For this reason, our canonical
MC method would not necessarily provide the unique and
correct results in this context, but further analyses involving
the comparison of different computational approaches would
be, most probably, required.

III. DISCUSSION

In this section, we provide an explanation for some of the
MC results on the basis of a simple physical model for the
excited states of the Hamiltonian �1�. In particular, we will
provide a physical picture for the temperature dependence of
the correlation length in the two distinct regimes ���0 and
���0.

A. Case ���0

We construct excited states of the Hamiltonian �1� by
modifying the square-wave profile to

� j = Sq�k0�j + uj�� = �
m=0

�

am sin�km�j + uj�� �5�

with uj being a displacement field. This perturbation corre-
sponds to displacing the position of the wall between adja-
cent segments which creates a generally nonperiodic spin
configuration. The quantity we need to compute is the incre-
ment of energy due to the displacement field

�Eh � Eh�u� − Eh�u = 0� , �6�

with Eh being defined as 	H
 j. �Eh is computed perturba-
tively, i.e., in the limit of small ũq �uj � �1 /N��qũqeiqj� �see
Appendix C�. For q�k0 and setting k0=kgs, with kgs being
	 /hgs, one has

�Egs =
1

N
�

q
�1

2
kgs

2 �2Egs

�k0
2 q2�ũq�2
 . �7�

Equation �7� describes the spectrum of the excited states �see
also Refs. 35 and 36 for a model in 2D� and the coefficient of
q2 is a stiffness kgs

2 ��2Egs /�k0
2� against fluctuations from the

ground-state spin configuration �see Appendix C for
�2Egs /�k0

2 definition�. Note the gapless quasicontinuum na-
ture of the spectrum of fluctuations, in clear contrast to the
gapped spectrum of fluctuations in a pure �g=0� Ising model.

Equation �7� is the central result of this section as it al-
lows computing the structure factor S��q� and the correlation
length ���T�. The resulting structure factor �3� consists of a
series of Lorentzian peaks centered at q= �km

S��q� =
1

2 �
m=0

� �am
2 � ��,m

�q − km�2 + ��,m
2 +

��,m

�q + km�2 + ��,m
2 
� ,

�8�

with a half-width at half maximum �HWHM� given by

��,m = �2m + 1�2 T

2
�2Egs

�k0
2

. �9�

The reader is referred to Appendix C for the details. The
same behavior is observed in the MC results plotted in Fig.
3. Our analysis finds the origin of the multiple peaks of
S��q� in the quasicontinuum spectrum of gapless excitations
�see Eq. �7�� appearing in the frustrated model for ���0. A
remarkable feature is the nontrivial scaling of the maxima
with the higher-harmonic index 2m+1

S��q = � km� =
1

2

am
2

��,m
=

16

	2

�2Egs

�k0
2

1

T

1

�2m + 1�4 , �10�

which accounts for the strong reduction detected for the ratio
between the peak heights for m=1 and m=0 in the MC re-
sults at finite temperatures. Note also the square-power de-
pendence of the HWHM ��,m on 2m+1 in formula �9�. This
theoretical prediction �solid line in the inset of Fig. 3 with
log-log scale� is in excellent agreement with the behavior of
the S��q� simulated for �=1.8 and J /g=2.5 at T /g=0.02
�squares in the inset of Fig. 3�. From the assumption k0
=kgs �Eq. �7�� it follows that within our analytic model, the
highest peak of S��q� is expected to occur at q�,max=kgs and
the correlation length is defined as ��=��,0

−1 consistently.
Even if we already know that in MC simulations q�,max does
not remain constant as T is varied �see Fig. 5�, this assump-
tion produces a 1 /T dependence of the correlation length

�� =
1

��,0
= 2

�2Egs

�k0
2

1

T
, �11�

which is in good agreement �B�=1.10�5�� with the corre-
sponding quantity computed again with the MC technique
�see Fig. 6�. Finally, the analytic model predicts that A�

=2��2Egs /�k0
2�. Computing this expression numerically pro-

duces the solid curve in the inset of Fig. 6. The steplike
behavior of 2��2Egs /�k0

2� reflects the fact that both the opti-
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mal domain width hgs and the second derivative of the
energy—computed in h=hgs—are discontinuous functions of
� �Ref. 3� in virtue of the discreteness of the lattice. Both the
order of magnitude and the scaling with � agree with MC
calculations �squares in the inset of Fig. 6�: A� decreases as
� increases approaching the uniform-ground-state region. In
summary, the agreement between numerical and analytical
results indicates that the distortion of the ground-state spin
profile due to the displacement of domain walls represents
the main disordering mechanism when ���0.

To the aim of reproducing the temperature dependence of
q�,max, the expansion for q�k0—performed in Appendix C
to get from Eq. �C12� to Eq. �C13�—is not expected to be
accurate anymore. However, in Appendix D we show that
letting h be an adjustable parameter at finite T with an ap-
propriate �temperature-dependent� stiffness we are able to
reproduce qualitatively the decrease in the modulation period
with increasing temperature observed in MC simulations.
This, indeed, happens because in the correlation function
�C21�, higher harmonics are progressively more suppressed
as the temperature increases. As a result, the competition
between the ferromagnetic exchange and the antiferromag-
netic long-range interaction turns out to be biased with re-
spect to the zero-temperature case and the period of modu-
lation decreases subsequently. This close relationship
between the suppression of higher-harmonic components and
the decrease in the characteristic period of modulation has
been already highlighted experimentally and by mean-field
calculations in an equivalent 2D system, suggesting that it
might be a general property of such models.

The pure Ising Hamiltonian is invariant with respect to
any operation that changes the variable � j to −� j. It has the
discrete symmetry group Z2. In the next subsection, we will
discuss this case in connection with ���0. The 1 /T depen-
dence of the correlation length obtained by introducing a
long-range interaction �g�0� suggests that, in the regime of
���0, the frustrated system crosses over to the completely
different universality class of one-dimensional chains hosting
a planar spin field with SO�2� continuous symmetry.37,38

B. Case ���0

In this regime, the ground state is uniform and the Ising
universality class is restored at low enough temperatures, as
shown by the correlation length diverging exponentially as
e�/T �see Fig. 7�. Specific to this case is that �=�� �see inset
Fig. 7�. We try to explain this result by considering that, in
the pure Ising model �g=0�, the barrier � equals the energy
cost to reverse half of the spins starting from a uniform con-
figuration. Were the general arguments which associate such
an energy with the low-temperature expansion of � �Ref. 39�
applicable in the presence of long-range interaction, the en-
ergy of a single wall would be expected to equal ��. When
half of the spins in the chain is reversed, the exchange energy
increases by 2J. To compute the variation due to the long-
range interaction, note that this interaction energy is just
given by twice the interaction energy between the two parts
of the chains lying on opposite sides with respect to the
domain wall �as the self-energy in each domain remains the

same before and after the flip of half of the spins�. This
interaction energy is given by

�g = − 2g�
j�0

�
i�1

1

�j + i��
= − 2g�

r�1

r

r� = − 2g��� − 1� ,

�12�

where ��x� is the Riemann zeta function, while i and j are the
site indices of spins lying on opposite sides of the domain
wall. The energy to create a wall becomes explicitly depen-
dent on � and amounts to �w=2J−2g���−1�. In the inset of
Fig. 7, one can appreciate how this estimate actually repro-
duces both the order of magnitude and the dependence on �
of the energy barrier of the exponentially diverging �� ob-
tained from MC simulations. To be rigorous, one should
point out that this approach is not completely justified in this
context since, when a long-range interaction is present, the
creation of a new domain wall is not statistically independent
of the number and the location of the pre-existing domain
walls in the chain; such a hypothesis is indeed a basic as-
sumption to put the correlation length in relationship with the
cost to create a single wall in the system.39 Letting � go to
infinity effectively reduces the spin-spin interaction to near-
est neighbors only so that our system becomes equivalent to
the usual Ising model provided that the exchange interaction
is replaced by J−g.

At T=0, the condition �w=0 defines �0. In fact, as soon
as �w�0 the uniform configuration has no more the lowest
energy and the system prefers to split into domains. For a
given ratio J /g, �0 fulfills the condition ���0−1�=J /g. Us-
ing the integral definition of the Riemann zeta function, the
previous condition can be rewritten as

J

g
= ���0 − 1� =

1

���0 − 1��0

�

dx
x�0−2

ex − 1

=
1

�0 − 1

1

���0 − 1��0

�

dx
x�0−1ex

�ex − 1�2

=
1

���0��0

�

dx
x�0−1e−x

�1 − e−2x�2 , �13�

this implicit equation for �0 turns out to be exact3 �the solu-
tion being the solid line in Fig. 1�.

For completeness, we recall that at relatively high tem-
peratures a well-defined period of modulation seems to
emerge in the correlation function also for ���0 �see inset
of Fig. 2�b��. A naïve, but essentially correct, interpretation
of the temperature dependence of q�,max in the regime �
��0 suggests that thermal fluctuations effectively reduce the
ratio J /g �the antiferromagnetic long-range interaction is fa-
vored in the competition with the ferromagnetic exchange
interaction, which finally leads to decrease the modulation
period with respect to the T=0 case�. In this sense, one may
think that even when the uniform pattern has the minimum
energy at T=0 �e.g., for J /g=2.5 and �=3 as in Fig. 2�b��,
thermal fluctuations induce an effective decrease in the ratio
J /g=2.5 so that a modulated phase eventually has lower free
energy at high enough temperatures. However, this effect can
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only be evident if such a crossover occurs when there is still
enough correlation between spins to develop—at least—half
period of modulation, i.e., roughly for ���1 /q�,max. In fact,
if the period of the underlying modulated phase is much
larger than the correlation length ��, two-point correlations
just display a monotonic decay as a function of the lattice
separation. A detailed investigation of this phenomenon
would be, indeed, intriguing but it is beyond the purpose of
the present work.

IV. CONCLUSIONS

The mean-field approximation reported, e.g., in Ref. 20
provides some straightforward results concerning ferromag-
netic Ising system frustrated by a long-range interaction.
However, the MFA fails in one important instance. It predicts
that the modulated order in the ground state propagates at
finite temperatures up to a second-order transition tempera-
ture Tc, while the Landau-Peierls instability forbids a finite
on-site 	� j
T at any finite temperature.25,40 On the other side,
MC simulations are much more accurate than the MFA but
very difficult to perform under experimentally realistic con-
ditions. For instance, the large modulation lengths often ob-
served in experiments are practically inaccessible to MC
simulations. We concentrated on a model �Eq. �1�� that is
highly simplified but captures some essential characteristics
of some physically relevant two-dimensional frustrated sys-
tems. Within this model, we have been able to enlarge the
modulation length with respect to full two-dimensional MC
simulations.41,42 With this model, we have obtained a set of
results that might help to shed light onto some experimental
outcomes. In particular, the modulation length appearing in
the ground state is found to remain a characteristic length at
finite temperatures, where it appears as the length modulat-
ing the oscillatory part of the correlation function. Strikingly,
it decays with temperature in a way that is similar to the
temperature dependence of the stripe-domain width observed
in MFA and experimentally on Fe/Cu�001� films.20,21 In ad-
dition, the spatial profile of the correlation function contains
the same kind of higher harmonics appearing in the MFA
spin profile, with only one fundamental harmonic remaining
at sufficiently high temperatures, as specified within the
MFA and found experimentally.20 In contrast to the MFA,
which predicts a second-order phase transition also in 1D, we
do not find any trace of a phase transition—and this is a
major deviation from full two-dimensional MC
simulations41,42 or experimental findings. When the spatial
decay of the long-range interaction is too short ranged, the
ground state and the finite-temperature state lose the modu-
lated character and become uniform. Correspondingly, the
system crosses over from the universality class proper of 1D
systems with continuous symmetry37,38 to the standard 1D
Ising-type universality class.43,44

For future work, a more accurate treatment of the dis-
placement field uj beyond the q�k0 approximation �see Ap-
pendix C� is certainly to be considered.
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APPENDIX A: MONTE CARLO METHOD

In this appendix, we discuss the technical details of the
MC method we used to study the finite-temperature proper-
ties of the Hamiltonian �1�. A first important issue for the
system under investigation is the treatment of finite-size ef-
fects. In the presence of long-range interactions, they need to
be handled with particular care both numerically and
analytically.45 Some techniques to tackle the problem nu-
merically are given, for instance, in Ref. 46. We perform our
simulations on a system containing L spins and treat the
long-range effects by replicating many identical copies of the
“simulation box.”47 More explicitly, the interaction between
two spins separated by r lattice sites reads as

G��r� =
1

r� + �
n

1

�r + nL��
, �A1�

where the index n accounts for the number N /L of replicated
boxes. Since we have in mind the thermodynamic limit N
→�, for numerical evaluation of G��r� we let n go to �� in
order to account for the copies of the system lying on both
the left-hand and right-hand sides of the simulated segment,
containing just L spins. The effective coupling �A1� can be
rewritten, in a way that is more suitable for computational
purposes

G��r� =
1

r� + �
n=�1¯��

1

�r + nL��
=

1

r� + �
n=1

� � 1

�r + nL��

+
1

�r − nL��
 =
1

r� +
1

L���n=1

M

� 1

�n +
r

L
�� +

1

�n −
r

L
���

+ �
n=M+1

�

� 1

�n +
r

L
�� +

1

�n −
r

L
���� �

1

r�

+
1

L���n=1

M

� 1

�n +
r

L
�� +

1

�n −
r

L
��� + 2 �

n=M+1

�
1

n��
=

1

r� +
2����

L� +
1

L� �
n=1

M

� 1

�n +
r

L
�� +

1

�n −
r

L
�� −

2

n�� ,

�A2�

in the third passage we have neglected r /L with respect to
M; the error of the whole approximation can be estimated
following Ref. 47. This approximation reduces the main
computational task to evaluating the finite sum over n which
is—however—rapidly convergent. Finally, the working
Hamiltonian, restricted to our simulation box, is given by
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H = − J�
i=1

L

�i�i+1 +
g

2�
i=1

L

�
j=1

L

�i� jG��i − j� , �A3�

which descends directly from Eq. �1� with the replica as-
sumption �i�nL=�i�n= �1¯ ���, periodic boundary con-
ditions on the simulation box �L+1=�1, and setting r= �i− j�.
Note that the indices i and j now vary in the range �1,L� and
are allowed to be equal, G��0� being representative of the
interaction between different spins in the original Hamil-
tonian �1�; in this particular case �r=0�, there is no interac-
tion inside the simulation box but the ith spin still interacts
with its own copies lying in the different replicas, �i�nL, so
that

G��0� = �
n=�1¯��

1

�nL��
=

2����
L� . �A4�

The MC simulations have been performed using the simu-
lated annealing �SA� �Ref. 48� paradigm. The SA is exten-
sively applied in statistical physics with the intent to study
systems where both the ground-state energy and the equilib-
rium at low temperatures are inaccessible through the basic
Metropolis criterion.46 Certainly, spin glasses,49 frustrated
magnetic spin structures,50 and models with long-range
interactions45 are some typical examples of systems where
the SA and related methods51 are largely exploited.

We also have to remind that in literature some cluster
methods were employed in order to reach a correct thermo-
dynamic equilibrium for a simple model where ferromag-
netic long-range interactions are only present.52 However,
the strong frustration due to the competition between the
antiferromagnetic long-range interactions and the nearest-
neighbor ferromagnetic exchange interaction renders the
generalization of such cluster MC technique to the present
case nontrivial. For this reason, we have followed in this
work the main idea of Kirkpatrick et al.48 A random initial
configuration �which should be considered as a paramagnetic
state� is picked up. Subsequently, the thermodynamic equi-
librium at a high enough temperature T0 is established. We
remember that the MC steps per spin considered here only
comprise Metropolis moves at the analyzed temperature. T0
is usually chosen in order to have a high MC acceptance
ratio per spin. Then the temperature is decreased gradually
T→T−�T��T�0�, and a fixed number of MC steps per
spin � is run, starting with the last configuration sampled at
the previous higher temperature. So, the main assumption is
to force a constant and sufficiently slow cooling rate defined
as r=�T /�. We have taken �T=0.1, . . . ,0.001 and �
=1, . . . ,5�105 depending on the studied value of �. The
procedure is completed when the ground state is approached.

We have considered simulation boxes of size L=100, 200,
500, 1000, and 2000. After discarding the first 1�105 MC
steps, we have collected between 5�105 and 1�106 mea-
surements of the thermodynamic observables, repeating the
simulation for each temperature at least three times. The es-
timation of the statistical errors has been achieved by apply-
ing the usual blocking technique.46

APPENDIX B: CORRELATIONS IN THE GROUND STATE

In this appendix, we compute the two-point correlations
for a generic square-wave spin profile representative of the
regime in which the ground state consists of domains: �
��0. The lowest-energy configurations, at T=0, are known
to be given3 by square-wave spin profiles

� j = Sq�k0j� = �
m=0

�

am sin�kmj� , �B1�

with k0=	 /h, km=	�2m+1� /h, and am=4 / �	�2m+1��. With
the orthogonality relation � j=1

N e−i�k−k��j =N�k,k�, the two-point
correlations averaged over the site variables j can be com-
puted

	� j+r� j
 j =
1

N
�
j=1

N

Sq�k0�j + r��Sq�k0j�

=
1

N
�
j=1

N

�
m,m�=0

�

am�am sin�km�j + r��sin�km�j�

=
1

2 �
m=0

�

am
2 cos�kmr� . �B2�

The Fourier coefficients of the series obtained in the final
passage of Eq. �B2� happen to be the same as for the sym-
metric triangular wave of period 2h so that in the text we use
the compact notation 	� j+r� j
 j =Tr�k0r�.

Equation �B2� allows writing the energy per spin for a
general square-wave profile

Eh = − J Tr�k0� +
g

2 �
m=0

�

am
2 �

r�1

cos�kmr�
r� = �

m=0

�

am
2 f��km� ,

�B3�

which depends parametrically on the half period of modula-
tion h. The ground-state energy for a given ratio J /g and �
can be obtained by minimizing Eq. �B3� with respect to h
numerically, which consequently defines the equilibrium do-
main width hgs at T=0. The exchange term in Eq. �B3�
straightforwardly gives −J Tr�k0�=−J�1−2 /h�, also deduc-
ible by counting the number of walls present in the domain
configuration with modulation period 2h. The function
f��km�=−�J /2�cos�km�+g /2�r�1�cos�kmr� /r�� introduced
above will be used to write the perturbed energy in a more
compact form.

APPENDIX C: PERTURBATIVE TREATMENT OF
CORRELATIONS AT FINITE TEMPERATURES

In this appendix, we develop a perturbative elastic model
which allows us to compute the two-point correlations in the
regime ���0 at finite temperatures. Let us consider a dis-
placement field, uj, of the whole square-wave profile �B1�
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� j = Sq�k0�j + uj�� = �
m=0

�

am sin�km�j + uj�� . �C1�

To compute how the energy �B3� is modified by the presence
of this elementary perturbation, we introduce the constants

�a = km�j + r�
b = km�j � �� = kmuj+r

� = km�uj ,
� �C2�

where the two greek letters will henceforth be assumed in-
finitesimal. Equation �B2� then involves terms such as

sin�a + ��sin�b + �� = sin a sin b cos � cos �

+ sin a cos b cos � sin �

+ cos a sin b sin � cos �

+ cos a cos b sin � sin � . �C3�

We will further assume that the average over the lattice in-
dices j, 	¯ 
 j, can be performed independently for the rigid
pattern variables �latin letters� and for the fluctuating dis-
placement field uj �Ref. 53�,

	sin a sin b cos � cos �
 j = 	sin a sin b
 j	cos � cos �
 j .

�C4�

The average 	¯ 
 j for elementary trigonometric functions
with arguments a and b gives

	sin a sin b
 j = 	cos a cos b
 j =
1

2
�m,m� cos�kmr�

	sin a cos b
 j = − 	cos a sin b
 j =
1

2
�m,m� sin�kmr� ,

�C5�

which can be exploited to average Eq. �C3� with respect to j

	sin�a + ��sin�b + ��
 j =
1

2
�m,m� cos�kmr�	cos � cos �

+ sin � sin �
 j +
1

2
�m,m� sin�kmr�

�	cos � sin � − sin � cos �
 j

=
1

2
�m,m��cos�kmr�	Re�ei��−���
 j

+ sin�kmr�	Im�ei��−���
 j� , �C6�

then, recalling that �−�=km�uj −uj+r�, we get

	� j+r� j
 j =
1

2 �
m=0

�

�am
2 �cos�kmr�	Re�eikm�uj−uj+r��
 j + sin�kmr�

�	Im�eikm�uj−uj+r��
 j�� . �C7�

The introduction of the displacement field brings an incre-
ment to the energy of a general square-wave profile �B3�
equal to

�Eh = − J
1

2 �
m=0

�

	am
2 �sin�km�sin�km�uj − uj+1�� + cos�km��cos�km�uj − uj+1�� − 1��
 j +

g

2 �
m=0

� �am
2 �

r�1
� sin�kmr�

r� sin�km�uj − uj+r��

+
cos�kmr�

r� �cos�km�uj − uj+r�� − 1�
�
j

� − J
1

2 �
m=0

� �am
2 �− sin�km�km�uj+1 − uj� −

1

2
cos�km�km

2 �uj+1 − uj�2
�
j

+
g

2 �
m=0

� �am
2 �

r�1
�−

sin�kmr�
r� km�uj+r − uj� −

1

2

cos�kmr�
r� km

2 �uj+r − uj�2
�
j

, �C8�

where we have expanded the energy for small displacement
differences uj+r−uj.

To proceed in our calculation, it is convenient to express
the displacement field in terms of its Fourier transform ũq

uj =
1

N
�

q

ũq
e iqj

with ũq = �
j

uj
e −iqj

, �C9�

the sum is performed over the Fourier wave numbers qm
= � �2	m� /N with m� �−N /2,N /2�, but we drop the index

m for simplicity. From Eq. �C9�, it follows that the averaged
square difference is

	�uj+r − uj�2
 j =
2

N
�

q

�ũq�2�1 − cos�qr�� , �C10�

while 	uj+r−uj
 j =0. The previous results and the elementary
trigonometric relation cos�x�cos�y�= �1 /2��cos�x−y�+cos�x
+y�� allow writing Eq. �C8� as
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�Eh =
1

N
�

q

J

2 �
m=0

� �am
2 km

2 �cos�km� −
1

2
cos�km − q� −

1

2
cos�km + q�
�ũq�2�

−
1

N
�

q

g

2 �
m=0

� �am
2 km

2 1

2 �
r�1

1

r��cos�kmr� −
1

2
cos��km − q�r� −

1

2
cos��km + q�r�
�ũq�2� . �C11�

Recalling the definition of f��km� in Eq. �B3� one can rewrite the perturbed energy �C11� as

�Eh =
1

N
�

q
�
m=0

� �am
2 km

2 �1

2
f��km − q� +

1

2
f��km + q� − f��km�
�ũq�2� . �C12�

As far as the large-distance behavior is concerned—like for
the computation of the correlation length—one can expand
the energy �C12� for q�k0 to get

�Eh =
1

N
�

q
�
m=0

� �am
2 km

2 1

2

�2f�

�2km
q2�ũq�2
 , �C13�

where the derivatives are formally defined by assuming km to
be a continuum variable k and taking the limit �nf� /�km

n

=limk→km
��nf� /�kn�, which is, of course, more justified the

larger h is. The fact that �km /�k0=km /k0 and �2km /�2k0=0
implies

�2Eh

�k0
2 = �

m=0

� �am
2 � �2km

�2k0

� f�

�km
+ � �km

�k0
�2 �2f�

�2km

�

= �
m=0

� �am
2 � km

k0
�2�2f�

�km
2 
 �C14�

so that the perturbed energy �C13� finally reads as

�Eh =
1

N
�

q
�1

2
k0

2�2Eh

�k0
2 q2�ũq�2
 . �C15�

Equation �C15� specialized to h=hgs for the ground-state en-
ergy essentially matches the result obtained in Ref. 36 for a
2D system with an analogous Hamiltonian. Within the range
of validity of Eq. �C15� and with restriction to h=hgs, an
analytical formula for the structure factor �3� can be derived.
The thermal averages 	¯ 
T of the displacement field uj,

which appears in the perturbed two-point correlation �C7�,
have to be performed first. Those thermal averages can easily
be evaluated since the Hamiltonian �C15� is quadratic for
small perturbations of the ground state �h=hgs�. The well-
known theorem for Gaussian distributed physical quantities25

readily gives

		� j+r� j
 j
T =
1

2 �
m=0

� �am
2 cos�kmr�exp�−

1

2
km

2 		�uj

− uj+r�2
 j
T
� . �C16�

On top of the site average Eq. �C10� one has to perform the
thermal average

		�uj+r − uj�2
 j
T =
2

N
�

q

	ũq
2
T�1 − cos�qr�� , �C17�

in particular 	ũq
2
T can be computed applying the equiparti-

tion theorem to Eq. �C15�: �kgs
2 /2���2Egs /�k0

2�	ũq
2
Tq2=T /2 so

that

		�uj+r − uj�2
 j
T =
T

kgs
2 �2Egs

�k0
2

2

N
�

q

1 − cos�qr�
q2 . �C18�

By writing the wave numbers explicitly, the sum in the pre-
vious formula can be evaluated analytically in the thermody-
namic limit �N→��

2

N
�

q

1 − cos�qr�
q2 =

2

N
�

m=−N/2

N/2 1 − cos�2	r

N
m�

�2	

N
m�2 =

N

2	2�1

2
�2	r

N
�2

+ 2�
m=1

N/2
1

m2 − 2�
m=1

N/2 cos�2	r

N
m�

m2 � �
N

2	2�1

2
�2	r

N
�2

+ 2�
m=1

�
1

m2

− 2�
m=1

� cos�2	r

N
m�

m2 � =
N

2	2�1

2
�2	r

N
�2

+ 2�	2

6
−

1

4
�2	r

N
�2

+
	

2
�2	r

N
� −

	2

6

� =

N

2	2

2	2r

N
= r . �C19�
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The thermal average �C17� is finally obtained

		�uj+r − uj�2
 j
T =
T

kgs
2 �2Egs

�k0
2

r . �C20�

Combining Eqs. �C20� and �C16�, the sought-for quantity
reads as

		� j+r� j
 j
T =
1

2 �
m=0

�

�am
2 cos�kmr�e−��,mr� , �C21�

with

��,m =
1

2
km

2 T

kgs
2 �2Egs

�k0
2

= �2m + 1�2 T

2
�2Egs

�k0
2

. �C22�

The structure factor �3� is thus expected to have a series of
Lorentzian peaks at q= � �2m+1�kgs, ��,m being the corre-
sponding HWHM. More explicitly

S��q� =
1

2 �
m=0

� �am
2 � ��,m

�q − km�2 + ��,m
2 +

��,m

�q + km�2 + ��,m
2 
� .

�C23�

APPENDIX D: OPTIMAL PERIOD OF MODULATION AT
FINITE TEMPERATURES

In this appendix we provide a qualitative explanation for
the dependence of q�,max on the temperature. First, we show
that the decrease in the modulation period with increasing
temperature is not reproduced just letting k0 be an adjustable
parameter at any temperature. In fact, formula �C21� can be
used to compute the two-point correlations associated with
any square-wave profile provided that the appropriate stiff-
ness against deviations from the given period h�hgs is ac-
cordingly employed: k0

2��2Eh /�k0
2� �see Eq. �B3� for the defi-

nition of Eh�. In this way, one can account for the effect of
thermal fluctuations on a square-wave profile of an arbitrary
half period h and construct the functional

	Hh
 = − NJ		� j+1� j
 j
T + N
g

2 �
r�1

		� j+r� j
 j
T

r� , �D1�

where

		� j+r� j
 j
T =
1

2 �
m=0

�

�am
2 cos�kmr�e−��,mr� �D2�

with km= �2m+1�	 /h �h�hgs are here allowed� and ��,m
=km

2 T / �2k0
2��2Eh /�k0

2��. The functional 	Hh
 �Eq. �D1�� can
then be minimized with respect to h to obtain an effective
equilibrium period of modulation at finite temperatures. This
procedure produces the dashed line in Fig. 8: for J /g=2.5
and �=2, the optimal half-period of modulation corresponds
the ground-state value hgs=11 for T�0.07, while the func-
tional �D1� has a minimum in h=10 for higher temperatures.
All these indicate that the constant decrease in the modula-

tion period observed in the MC simulations is not reproduced
just by including thermal fluctuations through a displacement
field into the different square-wave profiles and by further
minimizing the functional Eq. �D1� with respect to h. Such a
failure might be due to the assumption that the stiffness
k0

2��2Eh /�k0
2� remains the same at any temperature. In order

to circumvent this limitation, we propose a heuristic exten-
sion of our elastic model. Let us first compute the two-point
correlations at an infinitesimal temperature �T

		� j+r� j
 j
�T =
1

2 �
m=0

�

�am
2 cos�kmr�e−���,mr� , �D3�

with km= �2m+1�	 /h and ���,m=km
2 �T / �2k0

2��2Eh /�k0
2��. The

correlation �D3� can be thought of as resulting from a rigid
spin profile

� j = �
m=0

�

am sin�qmj� , �D4�

in which the wave numbers qm= �2m+1�q0 are statistically
distributed. In particular, if a Lorentzian distribution

P�qm� =
���,m

	

1

���,m
2 + �qm − km�2 �D5�

is assumed, the corresponding averages—performed after the
site average 	¯ 
 j—mimic the effect of thermal fluctuations
such that Eq. �D3� can then be rewritten as

		� j+r� j
 j
�T = 		� j+r� j
 j
qm

=
1

2 �
m=0

� �am
2�

−�

+�

dqmP�qm�cos�qmr�
 .

�D6�

The corresponding energy functional reads as

0 0.5 1 1.5 2

T / g

5

6

7

8

9

10

11

12

〈h
α〉

FIG. 8. �Color online� Plot of 	h�
 versus T /g in the domain-
ground-state region with J /g=2.5 and �=2: MC simulations �dia-
monds�, elastic model with constant �dashed line�, and temperature-
dependent �solid line� stiffness, k0

2��2Eh /�k0
2� and

k0
2��2	H̃h
T /�k0

2�cos, respectively �see text�.
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	H̃h
�T = 	H̃h
qm
= �

−�

+�

dqmP�qm��− NJ	� j+1� j
 j

+ N
g

2 �
r�1

	� j+r� j
 j

r� 

= �

m=0

� �am
2�

−�

+�

dqmP�qm�f��qm�
 . �D7�

To the aim of computing the correlation function at an infini-
tesimally higher temperature, the spin profile �D4� can be
further perturbed with a displacement field, which brings an
increment to the energy functional �D7� equal to

	�H̃h
qm
=

1

N
�

q
�
m=0

� �am
2�

−�

+�

dqmP�qm�qm
2 �1

2
f��qm − q�

+
1

2
f��qm + q� − f��qm�
�ũq�2� . �D8�

By analogy with what done in the previous section, we per-
form an expansion for q�k0 �since q0’s follow a Lorentzian
distribution with maximum in k0, q�q0 as well�

	�H̃h
qm
=

1

N
�

q
�
m=0

� �am
2�

−�

+�

dqmP�qm�qm
2 1

2

�2f�

�qm
2 q2�ũq�2� .

�D9�

The fact that qm= �2m+1�q0 implies �qm /�q0=qm /q0,
�2qm /�2q0=0, and, consequently,

	�H̃h
qm
=

1

N
�

q

1

2
�q0

2�2H̃h

�q0
2 �

qm

q2�ũq�2. �D10�

In the present case, the effective stiffness 	q0
2��2H̃h /�q0

2�
qm
has a more complicated dependence on q0 with respect to Eq.
�C15�. However, we can simplify its computation signifi-
cantly with the approximation

�q0
2�2H̃h

�q0
2 �

qm

� k0
2� �2	H̃h
qm

�k0
2
�

cos

= k0
2� �2	H̃h
�T

�k0
2
�

cos

,

�D11�
�2	H̃h
�T

�k0
2 �cos meaning that the derivative with respect to k0 in-

volves only the fluctuating functions cos�kmr�. The correla-
tion function at the new temperature �T=�T+�T� is given by

		� j+r� j
 j
T =
1

2 �
m=0

�

�am
2�

−�

+�

dqmP�qm�cos�qmr�exp�−
qm

2

2

�T

k0
2� �2	H̃h
�T

�k0
2 �

cos

r��
�

1

2 �
m=0

�

�am
2�

−�

+�

dqmP�qm�cos�qmr�exp�−
km

2

2

�T

k0
2� �2	H̃h
�T

�k0
2 �

cos

r�� , �D12�

where in the last passage we have substituted qm
2 inside the

exponential with its maximum km
2 . Such an approximation

allows writing the energy functional at the new temperature
again in the form �D7� provided that the HWHM of the
Lorentzian distribution P�qm� is changed into

��m =
km

2

2 � �T

k0
2�2Eh

�k0
2

+
�T

k0
2� �2	H̃h
�T

�k0
2 �

cos

�r . �D13�

The whole process can then be iterated to obtain correlations
at any temperature

		� j+r� j
 j
T =
1

2 �
m=0

�

�am
2 cos�kmr�e−��,m�T�r� , �D14�

and the corresponding energy functional

	H̃h
T = 	H̃h
qm
= �

m=0

� �am
2�

−�

+�

dqmP�qm�f��qm�
 ,

�D15�

with HWHM of P�qm� �letting �T→dT� equal to

��,m�T� = km
2�

0

T

d��,m =
1

2

km
2

k0
2�

0

T dT

� �2	H̃h
T

�k0
2 �

cos

.

�D16�

�Remember that the derivative with respect to k0 involves
only the fluctuating functions cos�kmr� and not the dumping
terms�. By minimizing numerically the functional �D15� with
respect to h, we obtain the steplike curve in Fig. 8. In this
case, a decrease with increasing temperature is indeed ob-
served throughout the investigated range. Such a qualitative
agreement with MC results suggests that the change in the
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modulation period and in the effective stiffness,

k0
2��2	H̃h
T /�k0

2�cos, should be closely related. It is worth re-
marking that a better agreement is, probably, not to be ex-

pected given the expansion for q�k0 that we performed to
pass from Eq. �C12� to Eq. �C13� and the further approxima-
tions in Eqs. �D11� and �D12�.
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53 If Eq. �C3� was expanded for small uj ��qũqeiqj Eq. �C9� at this
stage, the average 	¯ 
 j would produce terms such as ��km

−km�+q−q��. However, since a further thermal average has to
be performed over the variables uj, this would eventually bring a

term ��q−q��, thus justifying the present factorization of the
average 	¯ 
 j over the “latin” �a and b� and the “greek” �� and
�� variables.
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